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INTRODUCTION 

A group of problems has been determined [i] on the analysis of the strength properties 
of the parabolic lens of a focusing device [2] for a neutrino experiment, constituting two 
paraboloid shells of revolution connected at the vertices by a structural pin. The magnetic 
pressure on the'outer surface of the shells arising as a transient electric current passing 
through the lens leads to the appearance of dynamic stresses in them. The stress-deformed 
state of such shells has been obtained [i, 3] in a static approximation. In this work, the 
dynamic stresses ofajparabolic lens are investigated for current pulses constituting a single 
sinusoid half-period lasting between 70 and 300 ~sec at an amplitude of 500 kA. This de- 
pendence is a good approximation~to the actual shape of current pulses following at intervals 
between 6 and 8 sec. Since the decay time of free mechanical vibrations of shells is signi- 
ficantly less than the pulse interval, the initial conditions for the arrival of the next 
pulse are assumed to be zero. A variant of a rigid fastening of the lens (fastening the 
paraboloid shell with a pin and flange) is considered as the most acceptable in accordance 
with a previously conducted analysis [i]. The purpose of our study is to determine the 
maximal dynamic stresses for subsequent estimates of the fatigue strength. Since in this 
case the duration of the period of the lower tones of the natural modes of the shells is 
comparable to the duration of a current pulse, a complete solution of the problem, consist- 
ing in investigating the stressed-deformed state both during the passage of the current and 
in terms of the natural modes of the lens following the pulse, is necessary. Transient 
loading of a shell of variable thickness by a spatially inhomogeneous pressure is a rather 
complex problem. It is therefore numerically solved using two methods in order to insure 
completeness and reliability of the results. These methods are the eigenfunction method 
using the matrix-fitting method for integration of the differential equations, and the method 
of nets [4]. The results are analyzed. The fundamental notations in the work are ~. logous 
to those of [i, 3]. 

The system of differential equations describing the dynamic stressed-deformed state of 
a lens treated as a thin-walled shell of revolution loaded with internal pressure is de- 
scribed in the form 

where X(s, T)---- {u, w, 01, T1, Q1, ~]~1i is the vector_of the desired functions, F(s} is a square 
(6 x 6) coefficient matrix, G(s, T)----[0, 0, 0, O--pn,Oi is the load function vector, T-~(t/R o) 
VB0/pjz0 is the dimensionless time parameter, p is the density of the ~material at an arbi- 
trary point of the shell, Po is the density at a reference point, and E is a square matrix 
in which 

/ look  
,E,,:t = /0  ~ O/ 
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the remaining minors (Eli, E~2, E~:) being zero. 

In this problem, G(~ x)=G0~)q(~)=G0~)sin ~ Qt, where Q is the angular frequency of variation 
of the current passing through the lens. Thus the solution of the transient loading problem 
for a lens reduces to the solution of a nonhomogeneous system of differential equations (I) 
under zero initial at two-point boundary conditions. 

The solution (i) is usually represented in the eigenfunetion method [5-7] in the form 

x = E (x), 

where Xn~) are the eigenfunctions of the homogeneous system (I) [ G ~, x)=0 ] corresponding 
to the natural modes ~n=onRoVpoho/Bo. This representation leads in this case to slowly con- 
verging series. A significant improvement in the convergence can be obtained by using as a 
first approximation of the vector, the functions 

Xo(  

where X0~ ) is the static solution of the system of Eqs. (I) at G(~ ~)~-G0(~ �9 Only the minor 
X0~, ~) complementary to the exact solution is represented in the form of a series in eigen- 
functions. 

To find the natural modes and shapes of the shell vibrations, the system of homogeneous 
ordinary differential equations obtained from Eq. (i) by replacing 0s / 0~2 by -- ~ is 
solved by the two-sided matrix-fitting method [i, 8], i.e., by finding the rigidity matrix L 
or yielding matrix L, inverse to it for a series of values of ~ . The natural mode corre- 
sponds to the case when the determinant of the yielding matrix vanishes as we pass from one 
end of the shell to the other. It corresponds to the presence of trivial solution in the 
case of a rigid fastening. The given mode ~may turn out to be a natural mode for a part 
of the shell truncated from so to ~,corresponding to a free edge in the course of integrating 
at a given point s~ and may correspond to a fastening at a second point s 2 . In the first 
case, this leads to the matrix L, becoming infinite, and in the second case, it may reduce 
to the matrix L. The passage through this point is carried out by inverting the increasing 
matrix and continuing integration of the equations for the inverse matrix. Thus the method 
of calculation may be nonuniquely varied in the course of integration, more frequently, the 
greater is the desired mode. This fact limits the number of natural modes that may be deter- 
mined, though it may turn out to be completely sufficient for practical purposes (for example, 
60 fundamental modes were determined for one lens). 

The calculations demonstrated that the series converge at a sufficient rate within a 
wide range of durations of the current pulse, if we use the above method and isolate the 
quasistatic component Xo(~ ~). 

The algorithm for solving the problem by the method of nets consists in finding X~, 
T0+AT) using the system of Eqs. (I) if X~,T} and ~X(7.~) / 0~ are known at T=~0, and 
So~S~Sk . The value of 0X(~)/0~ is represented in the form of finite differences, boundary 
conditions being used on the edge of the shell. Integration with respect to time is carried 
out hy the Runge--Kutta method. The integral of integration with respect to time was limited 
by an abruptly appearing instability of the solution for fixed values of steps At with re- 
spect to time and coordinate As, that satisfied the physical condition c AtlAs , where c 
is the speed of sound in the shell material. We need only decrease As and At to expand the 
integral, the solutions differing only insignificantly in the stability region. 'l~e latter, 
as well as the abrupt nature under which the instability appears, can be reliably referred 
to the calculation results. 

The high (~2%) qualitative agreement between the maximal stresses and the values of the 
components X~,T) along the lens meridian obtained by the two methods indicates that our 
calculations were correct. 

Table i presents the geometric parameters of the three types of lens of a focusing de- 
vice for which calculations were carried out; a is the constant of the parabola generating 
the shell, ro is the pin radius, r k is the radius of the outer surface at the flange, L is 
the length of the lens, and ho is the shell thickness along lines of constant radii. A 
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TABLE 1 

- ~ =  ,cm | "h,c '%,cm~kg/ [/,,kI-Iz[ d '  
z22 ] ~1 [ ram_2 } Ikg,/mR12 

2 0,404 ~15 t 9;5 l;t) 1525  6,3o 18,5 
3 0,i23(i 3,0 24,0 1 ,o 813 2,82 7,2 

TABLE 2 

n t 2 3 4 5 6 7 ~, 

(o n 0,0f)l;).2 0,13256 0,13747 0,14475 0,1483:~ 0,15510 o,1596() 0,1(~7~ 
/n,kHz 6,:-i~ ~ 9.J 7 9,49 I(),o 10.25 10,7 '[ 1,02 1 1,56 

n 9 10 t l t 2  13 1~ t5  16 

0)  n 

.i~,. kHz 
0,17-~13 

12,1)2 
0,18266 

12,59 
0,1901;6 

i3,15 
0,2(){)2:' 

13.82 
().209()7 

14. r I 
( ) ,2185{  

'15,11 
0,222[0 
15,35 

0,2326{; 

16,08 

series of fundamental modes and the shapes of the natural modes of shells, the distribution 
of the dynamic stresses, and displacements along the meridian length s for a pulse duration 
of 157 Bsec (~=2 104sec-1),were determined and the dependence of the maximal stresses on 
pulse duration was investigated. 

The fundamental natural modes f, are presented in Table 1 for the three lenses, while 
the natural modes fn and dimensionless angular frequencies ~,~ for lens 2 are given in Table 
2, column 16. The fundamental modes fl were determined by the longitudinal vibrations and 
were close to c/L. A high density of the modes beginning with the second mode is a distinc- 
tive feature of the spectrum. 

The shapes of the natural modes with respect to ~ (curves i)and ~ (curves 2) of lens 
2 for the first (a), second (b), third (c), and seventh (d) tones are shown in Fig. i. Ex- 
citation of the fundamental tones leads to the appearance of displacements U sufficiently 
uniformly along the entire length, whereas the radial vibrations, the chief contribution to 
which are provided by the displacements w, are excited only near the flange, i.e., along 
the greater segment of the shell. The appearance of radial vibrations near the pin, on the 
other hand, is possible only with generation of sufficiently high tones. 

Figure 2 illustrates the evolution of the stress distributions and ~,2 
for the lens 2 (curves 1-4, respectively). Distributions are presented for the following 
moments of time after the start of the pulse: a) 50 Bsec, b) i00 ~sec; and c) 200 psec. 

The nature of the distributions for the selected currrent pulse parameters in its max- 
imum region (i00 psec) is nearly static [i, 3]. As in the static case, equivalent stresses 
~i-oTi~i are greatest on the outer surface of the paraboloid near the pin. Figure 3 
depicts their variation in time for lens 2 (curve i). The shape of the current pulse is 
depicted here by curve 2. The maximum of the equivalent stresses lies within the limits 
of the pulse duration, but lag with respect to the current maximum. The amplitude oi for 
free lens vibrations following the end of the current is roughly one-half. 

Table 1 presents the maximal equivalent dynamic odand static 6st stresses for all 
the lens at ~=2.10 ~ sec -I and Io = 500 kA. We have 20 d > ~ for lens 1 and o d < Ost for 
lens 3. This is because the frequency ~/~ of the induced force is close in the first 
case to the frequency f, of the primary tone of the natural modes and is twice the latter 
in the second case. The dependence of the maximal equivalent stress on the current pulse 
duration and o d is reached at ~/n~-f~.Thead tends to ~ with increasing current pulse duration 
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and ~d decreases, approaching a dependence proportional to ~]i/~ �9 with decreasing stress 
duration. 

In conclusion, the authors wish to express their deep appreciation to Professor L. I. 
Balabukh for his valuable advice and fruitful discussion~ as well as A. V. Samoilov for 
constant interest in the study. 
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